Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38405768

RESUMO

Bipolar disorder (BD) is a heritable mental illness with complex etiology. While the largest published genome-wide association study identified 64 BD risk loci, the causal SNPs and genes within these loci remain unknown. We applied a suite of statistical and functional fine-mapping methods to these loci, and prioritized 22 likely causal SNPs for BD. We mapped these SNPs to genes, and investigated their likely functional consequences by integrating variant annotations, brain cell-type epigenomic annotations, brain quantitative trait loci, and results from rare variant exome sequencing in BD. Convergent lines of evidence supported the roles of SCN2A, TRANK1, DCLK3, INSYN2B, SYNE1, THSD7A, CACNA1B, TUBBP5, PLCB3, PRDX5, KCNK4, AP001453.3, TRPT1, FKBP2, DNAJC4, RASGRP1, FURIN, FES, YWHAE, DPH1, GSDMB, MED24, THRA, EEF1A2, and KCNQ2 in BD. These represent promising candidates for functional experiments to understand biological mechanisms and therapeutic potential. Additionally, we demonstrated that fine-mapping effect sizes can improve performance and transferability of BD polygenic risk scores across ancestrally diverse populations, and present a high-throughput fine-mapping pipeline (https://github.com/mkoromina/SAFFARI).

2.
medRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38076956

RESUMO

Microglia, the innate immune cells of the central nervous system, have been genetically implicated in multiple neurodegenerative diseases. We previously mapped the genetic regulation of gene expression and mRNA splicing in human microglia, identifying several loci where common genetic variants in microglia-specific regulatory elements explain disease risk loci identified by GWAS. However, identifying genetic effects on splicing has been challenging due to the use of short sequencing reads to identify causal isoforms. Here we present the isoform-centric microglia genomic atlas (isoMiGA) which leverages the power of long-read RNA-seq to identify 35,879 novel microglia isoforms. We show that the novel microglia isoforms are involved in stimulation response and brain region specificity. We then quantified the expression of both known and novel isoforms in a multi-ethnic meta-analysis of 555 human microglia short-read RNA-seq samples from 391 donors, the largest to date, and found associations with genetic risk loci in Alzheimer's disease and Parkinson's disease. We nominate several loci that may act through complex changes in isoform and splice site usage.

3.
ACS Chem Neurosci ; 14(5): 909-916, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36799505

RESUMO

Visualizing neuronal anatomy often requires labor-intensive immunohistochemistry on fixed and dissected brains. To facilitate rapid anatomical staining in live brains, we used genetically targeted membrane tethers that covalently link fluorescent dyes for in vivo neuronal labeling. We generated a series of extracellularly trafficked small-molecule tethering proteins, HaloTag-CD4 (Kirk et al. Front. Neurosci. 2021, 15, 754027) and SNAPf-CD4, which directly label transgene-expressing cells with commercially available ligand-substituted fluorescent dyes. We created stable transgenic Drosophila reporter lines, which express extracellular HaloTag-CD4 and SNAPf-CD4 with LexA and Gal4 drivers. Expressing these enzymes in live Drosophila brains, we labeled the expression patterns of various Gal4 driver lines recapitulating histological staining in live-brain tissues. Pan-neural expression of SNAPf-CD4 enabled the registration of live brains to an existing template for anatomical comparisons. We predict that these extracellular platforms will not only become a valuable complement to existing anatomical methods but will also prove useful for future genetic targeting of other small-molecule probes, drugs, and actuators.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Neuroanatomia , Corantes Fluorescentes/química , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
4.
Front Neurosci ; 15: 754027, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867164

RESUMO

We combine a chemically-synthesized, voltage-sensitive fluorophore with a genetically encoded, self-labeling enzyme to enable voltage imaging in Drosophila melanogaster. Previously, we showed that a rhodamine voltage reporter (RhoVR) combined with the HaloTag self-labeling enzyme could be used to monitor membrane potential changes from mammalian neurons in culture and brain slice. Here, we apply this hybrid RhoVR-Halo approach in vivo to achieve selective neuron labeling in intact fly brains. We generate a Drosophila UAS-HaloTag reporter line in which the HaloTag enzyme is expressed on the surface of cells. We validate the voltage sensitivity of this new construct in cell culture before driving expression of HaloTag in specific brain neurons in flies. We show that selective labeling of synapses, cells, and brain regions can be achieved with RhoVR-Halo in either larval neuromuscular junction (NMJ) or in whole adult brains. Finally, we validate the voltage sensitivity of RhoVR-Halo in fly tissue via dual-electrode/imaging at the NMJ, show the efficacy of this approach for measuring synaptic excitatory post-synaptic potentials (EPSPs) in muscle cells, and perform voltage imaging of carbachol-evoked depolarization and osmolarity-evoked hyperpolarization in projection neurons and in interoceptive subesophageal zone neurons in fly brain explants following in vivo labeling. We envision the turn-on response to depolarizations, fast response kinetics, and two-photon compatibility of chemical indicators, coupled with the cellular and synaptic specificity of genetically-encoded enzymes, will make RhoVR-Halo a powerful complement to neurobiological imaging in Drosophila.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA